Tissue and Life Stage Specificity of Glutathione S-Transferase Expression in the Hessian Fly, Mayetiola destructor: Implications for Resistance to Host Allelochemicals

نویسندگان

  • Omprakash Mittapalli
  • Jonathan J. Neal
  • Richard H. Shukle
چکیده

Two new Delta and Sigma glutathione S-transferases (GSTs) in the Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae), were characterized and transcription profiles described. The deduced amino acid sequences for the two M. destructor Delta GSTs (MdesGST-1 and MdesGST-3) showed high similarity with other insect Delta GSTs including the conserved catalytic serine residue. The deduced amino acid sequence for the M. destructor Sigma GST (MdesGST-2) showed high similarity with other insect Sigma GSTs including the conserved glutathione and substrate binding sites. Quantitative tissue expression analysis showed that mRNA levels for MdesGST-1 were predominant in fat body, whereas for MdesGST-2 and MdesGST-3 expression was predominant in the midgut. Temporal expression during development showed peak mRNA levels for MdesGST-1 during larval development, but in the pupal stage for MdesGST-2. MdesGST-3 showed a constitutive expression pattern throughout development. M. destructor feeds on wheat, and expression analysis after feeding indicated that mRNA levels for MdesGST-1 were significantly higher in incompatible interactions in which larvae fed on resistant wheat, while MdesGST-3 was significantly higher in compatible interactions when larvae fed on susceptible wheat. MdesGST-2 showed an equivalent expression pattern during both interactions. These results suggest that the M. destructor Delta GSTs are important in detoxifying wheat allelochemicals during feeding, while Sigma GST participates in metabolism of endogenous substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Journal of Insect Science: Vol. 7 | Article 20

Two new Delta and Sigma glutathione S-transferases (GSTs) in the Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae), were characterized and transcription profiles described. The deduced amino acid sequences for the two M. destructor Delta GSTs (MdesGST-1 and MdesGST-3) showed high similarity with other insect Delta GSTs including the conserved catalytic serine residue. The deduced amino...

متن کامل

Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge.

Gall midges induce formation of host nutritive cells and alter plant metabolism to utilize host resources. Here we show that the gene Mayetiola destructor susceptibility-1 on wheat chromosome 3AS encodes a small heat-shock protein and is a major susceptibility gene for infestation of wheat by the gall midge M. destructor, commonly known as the Hessian fly. Transcription of Mayetiola destructor ...

متن کامل

Unbalanced Activation of Glutathione Metabolic Pathways Suggests Potential Involvement in Plant Defense against the Gall Midge Mayetiola destructor in Wheat

Glutathione, γ-glutamylcysteinylglycine, exists abundantly in nearly all organisms. Glutathione participates in various physiological processes involved in redox reactions by serving as an electron donor/acceptor. We found that the abundance of total glutathione increased up to 60% in resistant wheat plants within 72 hours following attack by the gall midge Mayetiola destructor, the Hessian fly...

متن کامل

The gut transcriptome of a gall midge, Mayetiola destructor.

The Hessian fly, Mayetiola destructor, is a serious pest of wheat and an experimental organism for the study of gall midge-plant interactions. In addition to food digestion and detoxification, the gut of Hessian fly larvae is also an important interface for insect-host interactions. Analysis of the genes expressed in the Hessian fly larval gut will enhance our understanding of the overall gut p...

متن کامل

Differential expression of candidate salivary effector proteins in field collections of Hessian fly, Mayetiola destructor

Evidence is emerging that some proteins secreted by gall-forming parasites of plants act as effectors responsible for systemic changes in the host plant, such as galling and nutrient tissue formation. A large number of secreted salivary gland proteins (SSGPs) that are the putative effectors responsible for the physiological changes elicited in susceptible seedling wheat by Hessian fly, Mayetiol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2007